Please do not redistribute slides without prior
permission.

Engineering a Ray Tracer on
the next weekend with DLang.

Social: @MichaelShah

Web : mshah.io

Courses: courses.mshah.io
YouTube:
www.voutube.com/c/MikeShah

Presentor: Mike Shah, Ph.D.
13:30-14:15, Sun, Dec. 18, 2022
Introductory Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

This talk is about using the D language
to do engineering. | happen to work in

graphics -- thus the ray tracer.

Engineering a Ray ITracer on
the next weekend with DLang.

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

This talk also builds on my DConf 22
talk in London -- | spend more time in

that talk engineering the ray tracer from
scratch, but | will review a bit.

DConf '22: Ray Tracing in (Less Than) One Weekend with DLang --
Mike Shah

529 views « 1 month ago

¥ TheD Language Foundation

Peter Shirley's book 'Ray Tracing in One Weekend' has been a brilliant introduction to implementing ray tracers..

= Title and Introduction | Overview | A definition of ray tracing | The ray tracin... 33 chapters v

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Your Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University in

Boston, Massachusetts.
o | teach courses in computer systems, computer graphics, and game
engine development.
o My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

| do consulting and technical training on modern C++,

Concurrency, OpenGL, and Vulkan projects (and hopefully b projects!)
o (Usually graphics or games related)

| like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

Contact information and more on: www.mshah.io

More online training coming at

http://www.mshah.io
http://courses.mshah.io

Abstract

The abstract that you read and enticed
you to join me is here!

This talk is a continuation of the Dconf 2022 talk on building a ray tracer in (less

than) one weekend. What this talk will show you is that Dlang is a language built
for software engineering, and creating applications that scale. In this talk | will
continue to take you through the journey of building a ray tracer, this time focusing
on some of the key features of Dlang. We’'ll start by optimizing the previous ray
tracer with ‘static if’ and ‘std.parallelism’ for example. Then I'll show object-oriented
programming in Dlang and build a few data structures. Finally, we'll display a final
rendered image using the new and improved ray tracer with several new features.

The abstract that you read and enticed
Abstract you to join me is here!

This talk is a continuation of the Dconf 2022 talk on building a ray tracer in (less
than) one weekend. What this talk will show you is that Dlang is a language built
for software engineering, and creating applications that scale. In this talk | will
continue to take you through the journey of building a ray tracer, this time focusing
on some of the key features of Dlang. We’'ll start by optimizing the previous ray
tracer with ‘static if’ and ‘std.parallelism’ for example. Then I'll show object-oriented
programming in Dlang and build a few data structures. Finally, we'll display a final

rendered image using the new and improved ray tracer with several new features.
—

| want to also provide attribution to the D Community members who
contributed code to the previous talk. There github names are provided,
and I'll amend this slide in the future if they’d like to further be publicly
acknowledged. :) 7

So where | want to pickup are the
‘few software things’ that were
missing from the previous talk

A Few Software
Engineering Things

© Chapter9 5 + Talks / 2022 _dconf London

Code for the talk

e Located here:
https://github.com/MikeShah/Talks/tree/main/2022 dconf online

H MikeShah/ Talks pubic

<> Code (%) Issues {9 Pullrequests () Actions [

¥ main + Talks /2022 dconf online/

e MikeShah Create README.md

https://github.com/MikeShah/Talks/tree/main/2022_dconf_online

Ray Tracers in 1 minute
Brief Recap

10

From last time, we had an
image that looked
something like this

.

Ray tracers are built by
casting ‘rays’ and testing
Intersections against that

object with a ray. l

) os
I
4
" v

Virtual Viewpoint

Ray Casting

Virtual Screen

Objects

n‘ﬁll

(Note: The origin of the ray can be a
light source, or if the origin is from the
camera we specifically call that “a
backward raytracer” -- | am
demonstrating backwards raytracing)

Ray Casting

Virtual Viewpoint

Virtual Screen

Objects

\ ‘
N
\

One challenge | presented last

time was the time to render such 2 0 l‘\ 3 1 . 5 9 4 S

image (ray tracing shadows and

reflections is expensive!). - U S e r 2 3 I"l 7 . 8 48 S
Govtnews - rrs worosome [SEENES ®m39.839s

my code that can be fixed as we S

Le:grir;]!some more about D -- let’s 1 4m 1 9 2 | 48 S
- 16m26.694s
Om38.128s

We'll start with a
scene like this
and see how long
it takes.

-profile

Improving our Ray Tracer

15

Profiling

e Built into the D compiler is a way to
add instrumentation at a function
level to tell us how much time is

spent in each function.

o This can give us good intuition into
where to spend our efforts optimizing
our program.

e Secondly, we also have the ability
to instrument memory allocations.

o This can tell you if you're unnecessarily
allocating on the heap.

Profiling

Built-in

CPU profiling

The D compiler can instrument generated code to measure per-function profiling
information, and save a report on program exit. This is enabled by the -profile compiler
switch. For projects that are configured to be built with dub, profiling can be enabled with
the profile build typed:

dub build --build=profile

The trace.log file can also be converted into a graphical HTML page using the third party D
Profile Viewergs.
Heap profiling

Starting with DMD 2.068, the D compiler can instrument memory allocations, and save a
report on program exit. This is enabled by the -profile=gc compiler switch. Or, using
dub, with the profile-gc build types?:

dub build --build=profile-gc

This is also available through the command line switch "--DRT-gcopt=profile: 1" see:
http://dlang.org/changelog.htmi#gc-options &

https://wiki.dlang.org/Development_tools 16

https://wiki.dlang.org/Development_tools

-profile [swiiches see -profile]

-g ./src/*.d -of=prog|&& ./prog && display ./output/image.ppm

e So highlighted above is the ‘-profile’ flag being used.

e Below is the summary of the profile (trace.log)
o Note the summary is found at the bottom of trace.log

Timer frequency unknown, Times are in Megaticks

Tree Func Per
Time Time Call

4888100 51585 51369 0 double utility.GenerateRandomDouble()
13419031 12011 10287 0] vec3.Vec3 vec3.Vec3.opBinary!("-").opB
12866509 9584 6947 0 double vec3.DotProduct(const(vec3.Vec3

10279720 34363 6823 0 bool sphere.Sphere.Hit(ray.Ray, double

6814276 5462 4708 0 vec3.Vec3 vec3.Vec3.opBinary!("+").opBi

35995879 4336 3747 0 const bool vec3.Vec3.IsZero()

6498806 3946 3466 vec3.Vec3 vec3.Vec3.opBinaryRight!("*")

2570181 73278 2032 vec3.Vec3 main.CastRay(ray.Ray, sphere.

20559440 4289 1867 const double vec3.Vec3.LengthSquared() 17
84971600 1543 1543 pure nothrow @nogc @trusted bool core.

https://dlang.org/dmd-linux.html#switches

Baseline Measurement (1/2)

-g ./src/*.d -of=prog|&& ./prog &&

e So what I'll do is measure our ‘instrumented executable’ and see how long it
takes (again, just a rough approximation)

time ./prog

18

Baseline Measurement (2/2)

-g ./src/*.d -of=prog|&& ./prog &&

e So what I'll do is measure our ‘instrumented executable’ and see how long it
takes (again, just a rough approximation)

_ Wow, quite a bit of
time to run our
program -- let’s see
what silly mistakes

ser 1m12.698s were made.
SVS S

UMmu .

19

Hot Functions

e So quite immediately we can see which functions are taking up time.

o Sorted from top to bottom by the ‘function time’ we can see where to begin our optimization.
o GenerateRandomDouble() -- hmm interesting! (And a few folks caught this last talk)

Timer frequency unknown, Times are in Megaticks

Tree Func Per
Time Time Call

double utility.GenerateRandomDouble()

vec3.Vec3 vec3.Vec3.opBinary!("-").opBinary(const(vec3.Vec3))

double vec3.DotProduct(const(vec3.Vec3), const(vec3.Vec3))

bool sphere.Sphere.Hit(ray.Ray, double, double, ref sphere.HitRecord)
vec3.Vec3 vec3.Vec3.opBinary!("+").opBinary(const(vec3.Vec3))

13419031
12866509
10279720
6814276

20

The slowness of constantly regenerating with Random

o C e :
| didn't Immedlately See le GenerateRandomDouble(){

anything wrong here, but ~ auto rnd = Random(unpredictableSeed):
uniform01(rnd);

| wasn’t thinking.
o ‘Random [docs] really only
needs to be setup one

time.
m (Then we get some louble GenerateRandomDouble(double min,

‘random-ish’ series of rnd = Random(unpredictableSeed);

numbers depending min + (max-min)*uniformO01(rnd);

on the generation)
e So repeatedly doing the
most costly portion of
work is costly!

21

https://dlang.org/phobos/std_random.html#Random

Initializing Random exactly one time

One trick a colleague
showed me at DConf last
year

Is to
initialize at the module
level one time.

Note: We can also use
‘shared static this’ if we
want our threads to
share, but let’s ignore
that for now.

module cat;

static this() {

// ... the initial operations of the module ...
}
static ~this() {

// ... the final operations of the module ...
}

https://ddili.org/ders/d.en/modules.html

https://ddili.org/ders/d.en/modules.html

The Fix (in utility.d)

e So here’s the fix,
and the usage in
GenerateRandom
Double()

e |et'sseethe
performance
Improvement on
the next slide!

Random rnd;

()4

o Random(unpredictableSeed);

le GenerateRandomDouble(){
uniform01(rnd);

23

Performance Test

e Same output, but down to 15 seconds! (From 72 seconds previously)
e (Note: | was careful to run both tests without profiling!)

./output/1mage.ppm written.mmlFile: ./output/image.ppm written.

1m7.285s real Om11.126s
1m12.698s user Om15.914s
Om0.713s Om0.936s

Before After

e Now let’s repeat the process of profiling, and see what we can speed up next.

24

The next profiled run

e On the next profiled run, it looks like many of the math operations are taking
time
o Vecd it looks like we can make some improvements.

frequency unknown, Times are in Megaticks

Tree Func Per
Time Time Call

54064139 45277 40411 vec3.Vec3 vec3.Vec3. opBinary =" opBinary(const(vec3.Vec3))
51857430 36139 27523

41410572 130026 26848 bool sphere Sphere. Hlt(ray Ray, double double ref sphere.HitRecord)
27419619 20554 18418 vec3.Vec3 vec3.Vec3.opBinary!("+").opBinary(const(vec3.Vec3))
145031217 15898 14333 const bool vec3.Vec3.IsZero()

26151452 14818 13493 vec3.Vec3 vec3.Vec3.opBinaryRight!("*").opBinaryRight(double)
10353699 172957 7920 vec3.Vec3 main.CastRay(ray.Ray, sphere.Hittable, int)

82821144 15940 7066 const double vec3.Vec3.LengthSquared

25

-profile=gc
-profile=gc|./src/*.d -of=prog

e Using D’s profiler we can see how many heap allocations took place, and
it turns out we are doing many with our Vec3!

bytes allocated,fallocations, type, function, file:line
2594630832 54054809 vec3.Vec3 vec3.Vec3.opBinary!"-".opBinary ./src/vec3.d:143
1316028336 27417257 vec3.Vec3 vec3.Vec3.opBinary!"+".opBinary ./src/vec3.d:143

1255141248 26148776 vec3.Vec3 vec3.Vec3.opBinaryRight!"*" .opBinaryRight ./src/vec3.d:200
662529280 10352020 sphere.HitRecord main.CastRay ./src/main.d:23

662463680 10350995 sphere.HitRecord sphere.HittableList.Hit ./src/sphere.d:44

431901600 8997950 vec3.Vec3 main.CastRay ./src/main.d:47

26

'to opBinary(string

= Vec3 result
Vec3 performance (1/3) i
result[0] =
_ result[1] =
e So here was the offending result[2] =
member function, and I've o=
highlighted in particular the “-” result[0] =
e But there’s actually another ;:zﬂﬁ% } i
big offender with ‘new’
o Agai : (op==
gain, we can profile but more result[0] =
specifically using the ‘gc’ profiler. result[1] =

result[2]

result[0]
result[7]
result[2]

e[0] - rhs.e[0];
e[1] - rhs.e[1];
e[2] - rhs.e[2]1;

result;

opBinary(op)(Vec3 rhs){

Vec3 performance (2/3) vees result iU LT TT 7]

So here was the offending
member function, and I've
highlighted in particular the “-”
But there’s actually another

big offender with ‘new’

o Again, we can profile but more
specifically using the ‘gc’ profiler.

opBinary(op) (Vec3 rhs){
Now, unfortunately Vec3 result =[Vec3(0. 0000 07:]

when | compile | get
a listing of errors.

(ap=="%")4

Uh oh-- what
happened?

mike:2022_dconf_online ¥ ./src/*.d -of=prog && ./prog

./src/vec3.d(143): no property ‘opCall® for type ‘vec3.Vec3', did you mean “new Vec3'?
./src/camera.d(28): template instance ‘vec3.Vec3.opBinary!"-"' error instantiating
./src/vec3.d(143): no property ‘opCall® for type ‘vec3.Vec3', did you mean "new Vec3'?
./src/camera.d(33): template instance ‘vec3.Vec3.opBinary!"+"' error instantiating
./src/vec3.d(143): no property ‘opCall® for type ‘vec3.Vec3', did you mean "new Vec3'?
./src/main.d(36): template instance ‘vec3.Vec3.opBinary!"*""' error instantiating

D e s

class versus struct (1/2)

e Inthe D language there is a

difference versus class and struct.

o struct’s are value types [see language
docs]
o classes are reference types
m This means classes must be
allocated with new
m classes allow us with
single-inheritance in D (inheriting
by default from object), whereas
structs are monomorphic (one
form, no inheritance)

30

https://dlang.org/spec/struct.html
https://dlang.org/spec/struct.html

class versus struct (2/2)

e So we have to choose up front on

our design.

o This is a good thing that | know the
type when | choose a struct type, that
I’m not allowing polymorphic behavior.

e Note: A few other changes -- we
can’t have a default constructor, so
| amend that in our code.

-profile=gc (After making a Vec3 a struct)

dmnd -g -profile=gc ./src/*.d -of=prog

e Now notice there are no allocations for Vec3!
o They’re all done on the stack -- so let’'s do another speed test!
bytes allocated, allocations, type, function, file:line

993941664 10353559 sphere.HitRecord main.CastRay ./src/main.d:23
993839232 10352492 sphere.HitRecord sphere.HittableList.Hit ./src/sphere.d:44

288000000 4500000 ray.Ray camera.Camera.GetCameraRay ./src/camera.d:33
227915392 3561178 ray.Ray material.Lambertian.Scatter ./src/material.d:27
146712384 2292381 ray.Ray material.Metal.Scatter ./src/material.d:46

32

-profile=gc (After making a Vec3 a struct)

dnd -g ./src/*.d -of=prog

File:

real

Rerunning again (this time, no profile collected)
We’re again, about twice as fast again!
./output/image.ppm written.j@File: ./output/image.ppm written.
Om11.126s real Om7.115s
0m15.914s user [g:%:g%;:]
Om0.936s Sys moO. S
Before After

33

One more round of removing allocations

mike:src$ grep -irn "new"

e Observe that as allocations (i.e. removing use of ‘new’) decrease, ‘system’

time due to context switching and requesting memory significantly decreases.
o (Note: And yes, for final tests I'll remove -g for a release build)

mike:2022_dconf_online$ dmd -g ./src/*.d -of=prog
mike:2022_dconf_online$ time ./prog
File: ./output/image.ppm written.

real Om5.938s
user Om5.940s
Sys Om0.004s

34

Where will | get more performance now? (1/2)

e So one of the questions now is
where am | going to get more

performance?
o I've reduced memory allocations
significantly

e Two areas come to mind
o 1. What can | compute in parallel
o 2. What computation can | avoid (i.e. by
removing redundant work, or otherwise
computing at compile-time)

35

So one of the questions now is
where am | going to get more

performance?
o I've reduced memory allocations
significantly

Two areas come to mind
o 1. What can | compute in parall
o 2. What computation can | avoid (i.e. by
removing redundant work, or otherwise
computing at compile-time)

Let's start here

36

Performance Strategy 1 of 2

Parallel Programming

(Save time by utilizing multiple cpus for independent tasks)

37

std.parallelism [docs]

e D offers several forms of
concurrency as well as
parallelism.

e For ourray tracer, we truly want
parallelism, as we are able to
cast rays in an order
independent task of casting
rays

o (i.e. We cast ~1 ray per pixel in our

screen, and we write to one
location in memory at a time.)

std.parallelism

stable v

Jump to: defaultPoolThreads - parallel - scopedTask - Task - task - TaskPool -
taskPool - totalCPUs

std.parallelismimplements high-level primitives for SMP parallelism. These in-
clude parallel foreach, parallel reduce, parallel eager map, pipelining and
future/promise parallelism. std.parallelism is recommended when the same op-
eration is to be executed in parallel on different data, or when a function is to be exe-
cuted in a background thread and its result returned to a well-defined main thread.
For communication between arbitrary threads, see std.concurrency.

std.parallelismis based on the concept of a Task. A Task is an object that repre-
sents the fundamental unit of work in this library and may be executed in parallel
with any other Task. Using Task directly allows programming with a
future/promise paradigm. All other supported parallelism paradigms (parallel fore-
ach, map, reduce, pipelining) represent an additional level of abstraction over Task.
They automatically create one or more Task objects, or closely related types that are
conceptually identical but not part of the public API

38

https://dlang.org/phobos/std_parallelism.html

For-loop to parallel task

e Highlighted below is the conversion from a serial O(n?) loop, to a parallel

computation using Tasks built in Dlang.

o Note: iota gives us the range of values that we are going to iterate on in parallel.
o Note: See Ali’s Dconf 22 talk for a guide to iota: https://www.youtube.com/watch?v=gwUcngTmKhg

(y ; cam.GetScreenHeight.iota.parallel){
(x; cam.GetScreenHeight().iota.parallel){

Vec3 pixelColor = Vec3(

39

https://www.youtube.com/watch?v=gwUcngTmKhg

real time (versus user time)

e Measuring the time now, we need to
somewhat rely on the ‘real’ time

when running parallel threads.

o ‘user’ time represents the total cpu time --
and that’s a sum of all of the cpus
running in parallel.

o So roughly speaking, we’ve now gone
from 5.9 seconds to less than a second.

File:

eal

./output/image.ppm written.

Om0.769s
Om11.324s
Om0.004s

40

Performance Strategy 2 of 2

Reducing Computation

(Save time)

Comparisons (1/3)

Large comparisons like what
is shown on the right are
often candidates for code
reduction.

If we can get rid of the
branches, and instead use
the ‘template’ to do the right
thing, then we can save
computation.

Vec3 opBinary(string

Vec3 result =
(op==)
result[0]
result[1]
result[”]

(op==
result[0]
result[1]
result[2]

(op==
result[0]
result[1]
result[”]

(op==
result[0]
result[1]
result[”]

result;

Vec3(

op)(double

rhs;
rhs;
rhs;

rhs;
rhs;
rhs;

rhs;
rhs;
rhs;

rhs;
rhs;
rhs;

rhs)
) %

Vec3 opBinary(op)(rhs)

Vec3 result = Vec3(: ,)
Using D’s mixin feature, the : (28,
correct code can be (, Op,
generated at compile-time. result;

o The ‘string op’ is already the
template parameter for the
operating being used.

So instead of having to
compare, simply use the mixin.
No comparisons, no branches
used, only generate code
needed (e.g. + or -), and
otherwise future-proof your
code if you add other
operators.

Vec3 opBinary(op)(rhs){

Vec3 result = Vec3(: d);
. . , (5 O y 53
e At this point, we're at at (o,).
0.587seconds from 0.769 (. O)
result:

seconds previously

ike:2022_dconf_online$ dmd -g ./src/*.d -of=prog
ike:2022_dconf_online$ time ./prog
File: ./output/image.ppm written.

real Om0.587s
user Om8.589s
SyS Om0.005s

Release Build

Release Build (1/2)

e So at this point, it's time to build an optimized executable using the DMD

compiler.
o We'll include all of the flags recommended from https://dlang.org/dmd-linux.html

optimize 1/1 A v X

- boundscheck—off sw1tches together.

https://dlang.org/dmd-linux.html

e So at this point, it's time to build an optimized executable using the DMD

compiler.
o We'll include all of the flags recommended from https://dlang.org/dmd-linux.html
o Il also remove the -g flag which we’ve been using previously.

e Pretty Incredible!
o Down to 0.282 seconds

m And there’s still more that can be done algorithmically (e.g. bounding volumes).
m (And probably more to be done improving my code!)

mike:2022_dconf_online$ dmd -0 -release -inline -boundscheck=off ./src/*.d -of=prog
mike:2022_dconf_online$ time ./prog

File: ./output/image.ppm written.

real Om0.282s
user Om3.901s
Sys Om0.000s

https://dlang.org/dmd-linux.html

(Aside) More notes on Profiling

e \We’ll end our profiling journey at this point as | move on in the talk.

e Profiling, measurement, and reproduction itself is a deep topic

o There is a previous talk at DConf to learn more:
o DConf Online 2021 - The How and Why of Profiling D Code - Max Haughton
m https://www.youtube.com/watch?v=6TDZa5LUBzY

e Atthe least, it's good to know there are tool built into D that we can use.

o Other tools (e.g. perf) are also quite easy to integrate (see talk above or other online
resources).

48

https://www.youtube.com/watch?v=6TDZa5LUBzY

Dub

Setting up our project for distribution

49

Dub - The official package manager

Now, throughout this talk
you’'ve seen me run the
project on the command
line.

But D has an official
package manager to
assist in building,
managing dependencies,
testing, and running our
project.

D3

Installing DUB

DUB is the D language's official package manager, providing simple and configurable cross-platform
builds. DUB can also generate VisualD and Mono-D package files for easy IDE support.

To install DUB, search your operating system's package manager or download the pre-compiled package
for your platform. The Windows installer will perform all installation steps; for other archives, you will
want to ensure the DUB executable is in your path. Installation from source on other platforms is as
simple as installing the dmd development files and your system's libcurl-dev, then running ./build.sh
in the repository's folder.

50

Physical File Structure

So after setting up dub with a simple ‘dub
init’ and removing my scripts, | end with a
clean project.

The dub.json file contains information
about our project and dependencies.

mike:2022_dconf_online$ tree

raytracer
dub.json

outpu
L 1mage.ppn

source
camera.d
main.d
material.d
matrix.d
ppm.d
ray.d
sphere.d
utility.d
vec3.d
README . md

51

Modifying our Raytracer

D lang standard library (Phobos)

The D standard library provides a
rich infrastructure of libraries for
engineering real world projects.

| was pleasantly surprised to find
csv, zlib, json libraries, curl,
sockets, and many other libraries
built-in.

Let’s proceed and use JSON to
setup our scene!

D Learn Documentation v

API Documentation

version 2.101.0
OVELVIEW Module Description
std « std.algorithm.comparison This is a submodule of std
algorithm v algorithms.
container v I : r i
. std.algorithm.iteration This is a submodule of std
datetime v
digest v std.algorithm.mutation This is a submodule of std
experimental v algorithms.
fz;r;artv std.algorithm.searching This is a submodule of std
algorithms.
math v g
net v std.algorithm.setops This is a submodule of std
range v plement set operations.
windows v std.algorithm.sorting This is a submodule of std
Package members
array std.container.array. This module provides an Af]
ascii liant on the GC, as an altern|
2_35_664 std.container.binaryheap This module provides a Bin
igint A

Downloads Packages Community v Resources v

API documentation

Parsing json file

() SO here’s a Snippet Of (exists(jsonfile)){
parsing a json file.

e No external dependencies,
just import std.json.

ng content = readText(jsonfile);

j= parseJSON(content);

in j){
(element; j[l.array){

property
Vec3 position

element[].array;
Vec3(property[0].floating,
property[1].floating,
property[2].floating);
t radius = property[3].floating;

(property[4].str==){
Sphere s Sphere(position,radius,lambert
world.Add(s);

(property[4].str==){
Sphere s = Sphere(position,radius,metal);

Example json file format.

e Here's an example json

file (./input/world.json)

o WIill create the same scene
as before, but now our
application can be more data
driven.

55

Nearing the Conclusion

Following along

Each major milestone
I've included the
commits for

My hope is that this
project will help those
new to the D
programming language
learn

History for Talks / 2022_dconf_online
-o- Commits on Dec 2, 2022

working .json parser for scene
@ Mikeshah commitied 5 minutes ago

-o- Commits on Dec 1, 2022

Restructured project to use dub, so | can use: 'dub run’ to run project
@ Wikeshah committed 1 hour ago

made some functions pure, and did a benchmark at this point with -O -...

@ Wikeshah committed 1 hour ago

Added in parallelism
° MikeShah committed 2 hours ago

removed more allocations
@ Mikeshah commitied 3 hours ago

After switching a Vec3 to a struct
‘ MikeShah committed 4 hours ago

Fixed random slowness using 'static this()' initialization for the mo...
G MikeShah committed 8 hours ago

Initial Commit, picking up from dconf london 2022 before any optimiza...

@ Mikeshah committed 13 hours ago

©

©

7aibifa

6a03b34

a2fdo99

775bf66

18f34dd

19425da

cdc620d

92eaaas

<>

<>

<>

<>

<>

<>

<>

<

57

Announced at DConf
London in 22.

Still alive and well!

o (Series starts this August,
maybe after this talk is
broadcast again)

Feel free to ping me on the
D Discord (I'm occasionally
active) if you have feedback

https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vid9Fso-3cB4C

DLang - YouTube Playlist

[Episode 0] | Series Teaser

matrix.py
matrix.d

DPLang -

D Language (DLang)
Programming

Mike Shah

Public ™

-

3 Shuffle

p Playall

Afull playlist on learning the D
Programming language. A great starting
place for beginners to start, as we'll start

from the very beginning. This playlist will
also move towards more advanced
features of the language as well - find it
all here!

= Sort

A [Dlang Series Teaser] Dlang versus Python speed comparison (Matrix Multiply)

Mike Shah

A Dlang versus Python (Matrix Multiply) #shorts series intro

Mike Shah

[Dlang Episode 1] The D Programming Language - dlang
Mike Shah

[Dlang Episode 2] D Language - setup on Linux (dmd, gdc, and Idc2 shown!)

Mike Shah

, [Dlang Episode 3] D Language - setup on Mac (Shown on Mac M1, DMD and LDC2)

Mike Shah

[Dlang Episode 4] D Language - DMD command line and Visual D for Visual Studio (DMD and LDC2)
Mike Shah

[Dlang Episode 5] The Anatomy of a Hello World Application

Mike Shah

[Dlang Episode 6] rdmd - Faster iteration times, use DLang like a scripting language

Mike Shah

Dlang Episode 7] D Language - Getting help learning D
Mike Shah

GnSIWO0OE4btJV&index=1

58

https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1
https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1

One more image ...

59

File: ./output/image.ppm written.

1920x1080 -- not bad!
fnd more optmizations o1y SAREEREE
a4 user 10m5.929s

on other compilers)
Sys 0m0.245s

-
Thank you!

Social: @MichaelShah
Web : mshah.io
Courses: courses.mshah.io
YouTube:
www.voutube.com/c/MikeShah

Presentor: Mike Shah, Ph.D.
13:30-14:15, Sun, 18, 2022
Introductory Audience

Dec.

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

