
Please do not redistribute slides without prior
permission.

1

Presentor: Mike Shah, Ph.D.
13:30-14:15, Sun, Dec. 18, 2022
Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 2

Engineering a Ray Tracer on
the next weekend with DLang.

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Presentor: Mike Shah, Ph.D.
13:30-14:15, Sun, Dec. 18, 2022
45 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 3

Engineering a Ray Tracer on
the next weekend with DLang.

This talk is about using the D language
to do engineering. I happen to work in
graphics -- thus the ray tracer.

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Presentor: Mike Shah, Ph.D.
13:30-14:15, Sun, Dec. 18, 2022
45 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 4

Engineering a Ray Tracer on
the next weekend with DLang.

This talk also builds on my DConf ‘22
talk in London -- I spend more time in
that talk engineering the ray tracer from
scratch, but I will review a bit.

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Your Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects (and hopefully D projects!)

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training coming at courses.mshah.io 5

http://www.mshah.io
http://courses.mshah.io

Abstract

This talk is a continuation of the Dconf 2022 talk on building a ray tracer in (less
than) one weekend. What this talk will show you is that Dlang is a language built
for software engineering, and creating applications that scale. In this talk I will
continue to take you through the journey of building a ray tracer, this time focusing
on some of the key features of Dlang. We’ll start by optimizing the previous ray
tracer with ‘static if’ and ‘std.parallelism’ for example. Then I’ll show object-oriented
programming in Dlang and build a few data structures. Finally, we’ll display a final
rendered image using the new and improved ray tracer with several new features.

The abstract that you read and enticed
you to join me is here!

6

Abstract

This talk is a continuation of the Dconf 2022 talk on building a ray tracer in (less
than) one weekend. What this talk will show you is that Dlang is a language built
for software engineering, and creating applications that scale. In this talk I will
continue to take you through the journey of building a ray tracer, this time focusing
on some of the key features of Dlang. We’ll start by optimizing the previous ray
tracer with ‘static if’ and ‘std.parallelism’ for example. Then I’ll show object-oriented
programming in Dlang and build a few data structures. Finally, we’ll display a final
rendered image using the new and improved ray tracer with several new features.

The abstract that you read and enticed
you to join me is here!

7

I want to also provide attribution to the D Community members who
contributed code to the previous talk. There github names are provided,
and I’ll amend this slide in the future if they’d like to further be publicly
acknowledged. :)

A Few Software
Engineering Things

8

So where I want to pickup are the
‘few software things’ that were
missing from the previous talk

Code for the talk

● Located here:
https://github.com/MikeShah/Talks/tree/main/2022_dconf_online

9

https://github.com/MikeShah/Talks/tree/main/2022_dconf_online

Ray Tracers in 1 minute
Brief Recap

10

11

From last time, we had an
image that looked
something like this

12

Ray tracers are built by
casting ‘rays’ and testing
intersections against that
object with a ray.

13

(Note: The origin of the ray can be a
light source, or if the origin is from the
camera we specifically call that “a
backward raytracer” -- I am
demonstrating backwards raytracing)

14

One challenge I presented last
time was the time to render such
image (ray tracing shadows and
reflections is expensive!).

Good news -- there were some
inefficiencies folks showed me in
my code that can be fixed as we
learn some more about D -- let’s
begin!

-profile
Improving our Ray Tracer

15

We’ll start with a
scene like this
and see how long
it takes.

Profiling

16

● Built into the D compiler is a way to
add instrumentation at a function
level to tell us how much time is
spent in each function.

○ This can give us good intuition into
where to spend our efforts optimizing
our program.

● Secondly, we also have the ability
to instrument memory allocations.

○ This can tell you if you’re unnecessarily
allocating on the heap.

https://wiki.dlang.org/Development_tools

https://wiki.dlang.org/Development_tools

-profile [switches see -profile]

17

● So highlighted above is the ‘-profile’ flag being used.
● Below is the summary of the profile (trace.log)

○ Note the summary is found at the bottom of trace.log

https://dlang.org/dmd-linux.html#switches

Baseline Measurement (1/2)

18

● So what I’ll do is measure our ‘instrumented executable’ and see how long it
takes (again, just a rough approximation)

Baseline Measurement (2/2)

19

● So what I’ll do is measure our ‘instrumented executable’ and see how long it
takes (again, just a rough approximation)

Wow, quite a bit of
time to run our
program -- let’s see
what silly mistakes
were made.

Hot Functions

● So quite immediately we can see which functions are taking up time.
○ Sorted from top to bottom by the ‘function time’ we can see where to begin our optimization.
○ GenerateRandomDouble() -- hmm interesting! (And a few folks caught this last talk)

20

The slowness of constantly regenerating with Random

● I didn’t immediately see
anything wrong here, but
I wasn’t thinking.

○ ‘Random [docs] really only
needs to be setup one
time.

■ (Then we get some
‘random-ish’ series of
numbers depending
on the generation)

● So repeatedly doing the
most costly portion of
work is costly!

21

https://dlang.org/phobos/std_random.html#Random

Initializing Random exactly one time

● One trick a colleague
showed me at DConf last
year (and well
documented in Ali Çehreli
’s book linked below) is to
initialize at the module
level one time.

● Note: We can also use
‘shared static this’ if we
want our threads to
share, but let’s ignore
that for now.

22

https://ddili.org/ders/d.en/modules.html

https://ddili.org/ders/d.en/modules.html

The Fix (in utility.d)

● So here’s the fix,
and the usage in
GenerateRandom
Double()

● Let’s see the
performance
improvement on
the next slide!

23

Performance Test

● Same output, but down to 15 seconds! (From 72 seconds previously)
● (Note: I was careful to run both tests without profiling!)

● Now let’s repeat the process of profiling, and see what we can speed up next.

24

Before After

The next profiled run

● On the next profiled run, it looks like many of the math operations are taking
time

○ Vec3 it looks like we can make some improvements.

25

-profile=gc

26

● Using D’s profiler we can see how many heap allocations took place, and
it turns out we are doing many with our Vec3!

Vec3 performance (1/3)

● So here was the offending
member function, and I’ve
highlighted in particular the “-”

● But there’s actually another
big offender with ‘new’

○ Again, we can profile but more
specifically using the ‘gc’ profiler.

27

Vec3 performance (2/3)

● So here was the offending
member function, and I’ve
highlighted in particular the “-”

● But there’s actually another
big offender with ‘new’

○ Again, we can profile but more
specifically using the ‘gc’ profiler.

28

Vec3 performance

● So here was the offending
member function, and I’ve
highlighted in particular the “-”

● But there’s actually another
big offender with ‘new’

○ Again, we can profile but more
specifically using the ‘gc’ profiler.

29

Now, unfortunately
when I compile I get
a listing of errors.

Uh oh-- what
happened?

class versus struct (1/2)

● In the D language there is a
difference versus class and struct.

○ struct’s are value types [see language
docs]

○ classes are reference types
■ This means classes must be

allocated with new
■ classes allow us with

single-inheritance in D (inheriting
by default from object), whereas
structs are monomorphic (one
form, no inheritance)

30

https://dlang.org/spec/struct.html
https://dlang.org/spec/struct.html

class versus struct (2/2)

● So we have to choose up front on
our design.

○ This is a good thing that I know the
type when I choose a struct type, that
I’m not allowing polymorphic behavior.

● Note: A few other changes -- we
can’t have a default constructor, so
I amend that in our code.

31

-profile=gc (After making a Vec3 a struct)

32

● Now notice there are no allocations for Vec3!
○ They’re all done on the stack -- so let’s do another speed test!

-profile=gc (After making a Vec3 a struct)

33

● Rerunning again (this time, no profile collected)
● We’re again, about twice as fast again!

Before After

One more round of removing allocations

● Observe that as allocations (i.e. removing use of ‘new’) decrease, ‘system’
time due to context switching and requesting memory significantly decreases.

○ (Note: And yes, for final tests I’ll remove -g for a release build)

34

Where will I get more performance now? (1/2)

● So one of the questions now is
where am I going to get more
performance?

○ I’ve reduced memory allocations
significantly

● Two areas come to mind
○ 1. What can I compute in parallel
○ 2. What computation can I avoid (i.e. by

removing redundant work, or otherwise
computing at compile-time)

35

Where will I get more performance now? (2/2)

● So one of the questions now is
where am I going to get more
performance?

○ I’ve reduced memory allocations
significantly

● Two areas come to mind
○ 1. What can I compute in parallel
○ 2. What computation can I avoid (i.e. by

removing redundant work, or otherwise
computing at compile-time)

36

Let’s start here

Performance Strategy 1 of 2

Parallel Programming
(Save time by utilizing multiple cpus for independent tasks)

37

std.parallelism [docs]

38

● D offers several forms of
concurrency as well as
parallelism.

● For our ray tracer, we truly want
parallelism, as we are able to
cast rays in an order
independent task of casting
rays

○ (i.e. We cast ~1 ray per pixel in our
screen, and we write to one
location in memory at a time.)

https://dlang.org/phobos/std_parallelism.html

For-loop to parallel task

● Highlighted below is the conversion from a serial O(n2) loop, to a parallel
computation using Tasks built in Dlang.

○ Note: iota gives us the range of values that we are going to iterate on in parallel.
○ Note: See Ali’s Dconf 22 talk for a guide to iota: https://www.youtube.com/watch?v=gwUcngTmKhg

39

https://www.youtube.com/watch?v=gwUcngTmKhg

real time (versus user time)

● Measuring the time now, we need to
somewhat rely on the ‘real’ time
when running parallel threads.

○ ‘user’ time represents the total cpu time --
and that’s a sum of all of the cpus
running in parallel.

○ So roughly speaking, we’ve now gone
from 5.9 seconds to less than a second.

40

Performance Strategy 2 of 2

Reducing Computation
(Save time)

41

Comparisons (1/3)

● Large comparisons like what
is shown on the right are
often candidates for code
reduction.

● If we can get rid of the
branches, and instead use
the ‘template’ to do the right
thing, then we can save
computation.

42

Comparisons (2/3)

● Using D’s mixin feature, the
correct code can be
generated at compile-time.

○ The ‘string op’ is already the
template parameter for the
operating being used.

○ So instead of having to
compare, simply use the mixin.

○ No comparisons, no branches
used, only generate code
needed (e.g. + or -), and
otherwise future-proof your
code if you add other
operators.

43

Comparisons (3/3)

● At this point, we’re at at
0.587seconds from 0.769
seconds previously

44

Release Build

45

Release Build (1/2)

46

● So at this point, it’s time to build an optimized executable using the DMD
compiler.

○ We’ll include all of the flags recommended from https://dlang.org/dmd-linux.html

https://dlang.org/dmd-linux.html

Release Build (2/2)

47

● So at this point, it’s time to build an optimized executable using the DMD
compiler.

○ We’ll include all of the flags recommended from https://dlang.org/dmd-linux.html
○ I’ll also remove the -g flag which we’ve been using previously.

● Pretty Incredible!
○ Down to 0.282 seconds

■ And there’s still more that can be done algorithmically (e.g. bounding volumes).
■ (And probably more to be done improving my code!)

https://dlang.org/dmd-linux.html

(Aside) More notes on Profiling

● We’ll end our profiling journey at this point as I move on in the talk.

● Profiling, measurement, and reproduction itself is a deep topic
○ There is a previous talk at DConf to learn more:
○ DConf Online 2021 - The How and Why of Profiling D Code - Max Haughton

■ https://www.youtube.com/watch?v=6TDZa5LUBzY
● At the least, it’s good to know there are tool built into D that we can use.

○ Other tools (e.g. perf) are also quite easy to integrate (see talk above or other online
resources).

48

https://www.youtube.com/watch?v=6TDZa5LUBzY

Dub
Setting up our project for distribution

49

Dub - The official package manager

50

● Now, throughout this talk
you’ve seen me run the
project on the command
line.

● But D has an official
package manager to
assist in building,
managing dependencies,
testing, and running our
project.

Physical File Structure

51

● So after setting up dub with a simple ‘dub
init’ and removing my scripts, I end with a
clean project.

● The dub.json file contains information
about our project and dependencies.

Modifying our Raytracer

52

D lang standard library (Phobos)

53

● The D standard library provides a
rich infrastructure of libraries for
engineering real world projects.

● I was pleasantly surprised to find
csv, zlib, json libraries, curl,
sockets, and many other libraries
built-in.

● Let’s proceed and use JSON to
setup our scene!

Parsing json file

● So here’s a snippet of
parsing a json file.

● No external dependencies,
just import std.json.

54

Example json file format.

● Here’s an example json
file (./input/world.json)

○ Will create the same scene
as before, but now our
application can be more data
driven.

55

Nearing the Conclusion

56

Following along

57

● Each major milestone
I’ve included the
commits for

● My hope is that this
project will help those
new to the D
programming language
learn

DLang - YouTube Playlist

● Announced at DConf
London in 22.

● Still alive and well!
○ (Series starts this August,

maybe after this talk is
broadcast again)

● Feel free to ping me on the
D Discord (I’m occasionally
active) if you have feedback

58

https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4C
GnSlW0E4btJV&index=1

https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1
https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1

One more image ...

59

60

61

1920x1080 -- not bad!
(And still room for improvement
and more optimizations to try
on other compilers)

Presentor: Mike Shah, Ph.D.
13:30-14:15, Sun, Dec. 18, 2022
Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah 62

Engineering a Ray Tracer on
the next weekend with DLang.

Thank you!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

